Amalgam Width of Matroids
نویسندگان
چکیده
We introduce a new matroid width parameter based on the operation of matroid amalgamation, which we call amalgam-width. The parameter is linearly related to branch-width on finitely representable matroids, while still allowing the algorithmic application on non-representable matroids (which is not possible for branch-width). In particular, any property expressible in the monadic second order logic can be decided in linear time for matroids with bounded amalgam-width. We also prove that the Tutte polynomial can be computed in polynomial time for matroids with bounded amalgam-width.
منابع مشابه
Decomposition width - a new width parameter for matroids
We introduce a new width parameter for matroids called decomposition width and prove that every matroid property expressible in the monadic second order logic can be computed in linear time for matroids with bounded decomposition width if their decomposition is given. Since decompositions of small width for our new notion can be computed in polynomial time for matroids of bounded branch-width r...
متن کاملMonadic second-order model-checking on decomposable matroids
A notion of branch-width may be defined for matroids, which generalizes the one known for graphs. We first give a proof of the polynomial time model checking of MSOM on representable matroids of bounded branch-width, by reduction to MSO on trees, much simpler than the one previously known. We deduce results about spectrum of MSOM formulas and enumeration on matroids of bounded branch-width. We ...
متن کاملExcluding a bipartite circle graph from line graphs
We prove that for fixed bipartite circle graph H, all line graphs with sufficiently large rank-width (or clique-width) must contain an isomorphic copy of H as a pivotminor. To prove this, we introduce graphic delta-matroids. Graphic delta-matroids are minors of delta-matroids of line graphs and they generalize graphic or cographic matroids.
متن کاملAmalgams of extremal matroids with no U2, l+2-minor
For an integer l ≥ 2, let U(l) be the class of matroids with no U2,l+2-minor. A matroid in U(l) is extremal if it is simple and has no simple rank-preserving singleelement extension in U(l). An amalgam of two matroids is a simultaneous extension of both on the union of the two ground sets. We study amalgams of extremal matroids in U(l): we determine which amalgams are in U(l) and which are extr...
متن کاملTangle-tree duality: in graphs, matroids and beyond⇤
We apply a recent duality theorem for tangles in abstract separation systems to derive tangle-type duality theorems for width-parameters in graphs and matroids. We further derive a duality theorem for the existence of clusters in large data sets. Our applications to graphs include new, tangle-type, duality theorems for tree-width, path-width, and tree-decompositions of small adhesion. Conversel...
متن کامل